Fundamentals of Statistical Signal Processing by Steven Kay, Hardcover, 9780135041352 | Buy online at The Nile
Departments
 Free Returns*

Fundamentals of Statistical Signal Processing

Detection Theory, Volume 2

Author: Steven Kay   Series: Fundamentals of Statistical Signal Processing

Hardcover

PLEASE PROVIDE ???

Read more
New
$383.11
Or pay later with
Check delivery options
Hardcover

PRODUCT INFORMATION

Summary

PLEASE PROVIDE ???

Read more

Description

50413-4 The most comprehensive overview of signal detection available. This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems. Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations. Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals. The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters.These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include: Detection in nonGaussian noise, including nonGaussian noise characteristics, known deterministic signals, and deterministic signals with unknown parameters Detection of model changes, including maneuver detection and time-varying PSD detection * Complex extensions, vector generalization, and array processing The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (Prentice Hall PTR, 1993, ISBN: 0-13-345711-7).

Read more

About the Author

STEVEN M. KAY is Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing.

Read more

Back Cover

The most comprehensive overview of signal detection available. This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems. Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations. Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals. The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters. These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include: Detection in nonGaussian noise, including nonGaussian noise characteristics, known deterministic signals, and deterministic signals with unknown parameters Detection of model changes, including maneuver detection and time-varying PSD detection Complex extensions, vector generalization, and array processing The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (Prentice Hall PTR, 1993, ISBN: 0-13-345711-7).

Read more

More on this Book

The most comprehensive overview of signal detection available. This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems. Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations. Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals. The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters. These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include: Detection in nonGaussian noise, including nonGaussian noise characteristics, known deterministic signals, and deterministic signals with unknown parameters Detection of model changes, including maneuver detection and time-varying PSD detection Complex extensions, vector generalization, and array processing The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (Prentice Hall PTR, 1993, ISBN: 0-13-345711-7).

Read more

Product Details

Publisher
Pearson Education (US) | Pearson
Published
23rd March 1998
Edition
1st
Pages
576
ISBN
9780135041352

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

New
$383.11
Or pay later with
Check delivery options