Data Analytics by Shuai Huang, Hardcover, 9780367609504 | Buy online at The Nile
Departments
 Free Returns*

Data Analytics

A Small Data Approach

Author: Shuai Huang and Houtao Deng   Series: Chapman & Hall/CRC Data Science Series

Highlights a combination of two aspects: technical concreteness and holistic thinking. Authors discuss what principles are used to invent these techniques, what assumptions are made, how mathematics is used to articulate these assumptions, and how these formulations generalize a range of real-world applications into generic and abstract forms.

Read more
Product Unavailable

PRODUCT INFORMATION

Summary

Highlights a combination of two aspects: technical concreteness and holistic thinking. Authors discuss what principles are used to invent these techniques, what assumptions are made, how mathematics is used to articulate these assumptions, and how these formulations generalize a range of real-world applications into generic and abstract forms.

Read more

Description

Data Analytics: A Small Data Approach is suitable for an introductory data analytics course to help students understand some main statistical learning models. It has many small datasets to guide students to work out pencil solutions of the models and then compare with results obtained from established R packages. Also, as data science practice is a process that should be told as a story, in this book there are many course materials about exploratory data analysis, residual analysis, and flowcharts to develop and validate models and data pipelines.

The main models covered in this book include linear regression, logistic regression, tree models and random forests, ensemble learning, sparse learning, principal component analysis, kernel methods including the support vector machine and kernel regression, and deep learning. Each chapter introduces two or three techniques. For each technique, the book highlights the intuition and rationale first, then shows how mathematics is used to articulate the intuition and formulate the learning problem. R is used to implement the techniques on both simulated and real-world dataset. Python code is also available at the book’s website:

Read more

Critic Reviews

"Another strength of the book is that the authors cover the regression methods comprehensively, starting from the relationship between variables, to the connections between methods. As a result, this book may be an introductory guide for health care professionals, students, and lecturers, both by showing the exercises with manual solutions and giving the R coding of the methods."
-Selen Yilmaz Isikhan in ISCB, September 2022

Read more

About the Author

Shuai Huang is an associate professor at the department of industrial & systems engineering at the university of Washington. He conducts interdisciplinary research in machine learning, data analytics, and applied operations research with applications on healthcare, manufacturing, and transportation areas.

Houtao Deng is a data science researcher and practitioner. He developed several new decision tree methods such as inTrees. He has built data-driven products for forecasting, scheduling, pricing, recommendation, fraud detection, and image recognition.

Read more

Product Details

Publisher
Taylor & Francis Ltd | Chapman & Hall/CRC
Published
20th April 2021
Pages
257
ISBN
9780367609504

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

Product Unavailable