Analysis of Variance, Design, and Regression by Ronald Christensen, Paperback, 9780367737405 | Buy online at The Nile
Departments
 Free Returns*

Analysis of Variance, Design, and Regression

Linear Modeling for Unbalanced Data, Second Edition

Author: Ronald Christensen   Series: Chapman & Hall/CRC Texts in Statistical Science

This second edition focuses on modeling unbalanced data. It presents many new topics, including new chapters on logistic regression, log-linear models, and time-to-event data. It shows how to model main-effects and interactions and introduces nonparametric, lasso, and generalized additive regression models. The text carefully analyzes small unba

Read more
Product Unavailable

PRODUCT INFORMATION

Summary

This second edition focuses on modeling unbalanced data. It presents many new topics, including new chapters on logistic regression, log-linear models, and time-to-event data. It shows how to model main-effects and interactions and introduces nonparametric, lasso, and generalized additive regression models. The text carefully analyzes small unba

Read more

Description

Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data.

New to the Second Edition



  • Reorganized to focus on unbalanced data


  • Reworked balanced analyses using methods for unbalanced data


  • Introductions to nonparametric and lasso regression


  • Introductions to general additive and generalized additive models


  • Examination of homologous factors


  • Unbalanced split plot analyses


  • Extensions to generalized linear models


  • R, Minitab®, and SAS code on the author’s website

The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.

Read more

Critic Reviews

“Praise for the First Edition:"... written in a clear and lucid style ... an excellent candidate for a beginning level graduate textbook on statistical methods ... a useful reference for practitioners." --Zentralblatt f”

Praise for the First Edition:"… written in a clear and lucid style … an excellent candidate for a beginning level graduate textbook on statistical methods … a useful reference for practitioners."
Zentralblatt für Mathematik

"Being devoted to students mainly, each chapter includes illustrative examples and exercises. The most important thing about this book is that it provides traditional tools for future approaches in the big data domain since, as the author says, the machine learning techniques are directly based on the fundamental statistical methods."
~Marina Gorunescu (Craiova)

Read more

About the Author

Ronald Christensen is a professor of statistics in the Department of Mathematics and Statistics at the University of New Mexico. Dr. Christensen is a fellow of the American Statistical Association (ASA) and Institute of Mathematical Statistics. He is a past editor of The American Statistician and a past chair of the ASA’s Section on Bayesian Statistical Science. His research interests include linear models, Bayesian inference, log-linear and logistic models, and statistical methods.

Read more

Product Details

Publisher
Taylor & Francis Ltd | CRC Press
Published
18th December 2020
Edition
2nd
Pages
636
ISBN
9780367737405

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

Product Unavailable