Nonparametrics for Sensory Science by J.C.W. Rayner, Hardcover, 9780813811123 | Buy online at The Nile
Departments
 Free Returns*

Nonparametrics for Sensory Science

A More Informative Approach

Author: J.C.W. Rayner, D.J. Best, Per Bruun Brockhoff and G.D. Rayner  

Hardcover

Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research.

Read more
New
$600.71
Or pay later with
Check delivery options
Hardcover

PRODUCT INFORMATION

Summary

Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research.

Read more

Description

Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research. Nonparametrics for Sensory Science is written to complement existing parametric methodology. Nonparametric methods are appropriate when facts are only available in nominal or ordinal form, and when the model assumptions necessary for parametric procedures do not hold.

Author Rayner and his colleagues consider problems including the most commonly occurring and important experimental designs: the one-sample, k-sample, blocked samples, samples with factorial structure and samples with correlation structure. Innovative new techniques are outlined and complemented with real examples. Techniques described may be applied to data where the traditional, most frequently applied nonparametric tests, such as the Kruskal-Wallis, the Friedman and the Spearman tests, are applied.

Those familiar with traditional nonparametric testing will be able to update their knowledge, acquiring powerful new methods. Those without prior knowledge of nonparametric testing will be able to acquire that knowledge through this book. Aimed at sensory scientists and statisticians interested in nonparametrics, the techniques of Nonparametrics for Sensory Science are of broad general interest, but are of particular interest in sensory evaluation applications.

Read more

About the Author

J.C.W. RAYNER, Ph.D. is associate professor in the School of Mathematics and Applied Statistics at the University of Wollongong, Australia.

D.J. BEST, Ph.D. is former principal research scientist at CSIRO Division of Food Research and is now principal research fellow in the School of Mathematics and Applied Statistics at the University of Wollongong, Australia.

P.B. BROCKHOFF, Ph.D. is professor of Informatics and Mathematical Modelling at the Technical University of Denmark.

G.D. RAYNER, Ph.D.is a fellow of the University of Wollongong, Australia.

Read more

Back Cover

Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research. Nonparametrics for Sensory Science is written to complement existing parametric methodology. Nonparametric methods are appropriate when facts are only available in nominal or ordinal form, and when the model assumptions necessary for parametric procedures do not hold.


Author Rayner and his colleagues consider problems including the most commonly occurring and important experimental designs: the one-sample, k-sample, blocked samples, samples with factorial structure and samples with correlation structure. Innovative new techniques are outlined and complemented with real examples. Techniques described may be applied to data where the traditional, most frequently applied nonparametric tests, such as the Kruskal-Wallis, the Friedman and the Spearman tests, are applied.


Those familiar with traditional nonparametric testing will be able to update their knowledge, acquiring powerful new methods. Those without prior knowledge of nonparametric testing will be able to acquire that knowledge through this book. Aimed at sensory scientists and statisticians interested in nonparametrics, the techniques of Nonparametrics for Sensory Science are of broad general interest, but are of particular interest in sensory evaluation applications.

Read more

More on this Book

Sensory evaluation is the perception science of the food industry. Sensory data can be costly to obtain and so gleaning the most information possible from the data is key. Increasingly, value is added to sensory evaluation by the use of statistics, especially to improve the quality of product development and to make the most of market research. Nonparametrics for Sensory Science is written to complement existing parametric methodology. Nonparametric methods are appropriate when facts are only available in nominal or ordinal form, and when the model assumptions necessary for parametric procedures do not hold. Author Rayner and his colleagues consider problems including the most commonly occurring and important experimental designs: the one-sample, k-sample, blocked samples, samples with factorial structure and samples with correlation structure. Innovative new techniques are outlined and complemented with real examples. Techniques described may be applied to data where the traditional, most frequently applied nonparametric tests, such as the Kruskal-Wallis, the Friedman and the Spearman tests, are applied. Those familiar with traditional nonparametric testing will be able to update their knowledge, acquiring powerful new methods. Those without prior knowledge of nonparametric testing will be able to acquire that knowledge through this book. Aimed at sensory scientists and statisticians interested in nonparametrics, the techniques of Nonparametrics for Sensory Science are of broad general interest, but are of particular interest in sensory evaluation applications.

Read more

Product Details

Publisher
John Wiley and Sons Ltd | Wiley-Blackwell
Published
22nd February 2006
Edition
1st
Pages
192
ISBN
9780813811123

Returns

This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.

New
$600.71
Or pay later with
Check delivery options