
Structural Dynamics of Electronic and Photonic Systems
$494.54
- Hardcover
608 pages
- Release Date
3 May 2011
Summary
Surviving the Shake: Structural Dynamics for Electronics and Photonics
The proposed book delivers comprehensive methodologies and recommendations for determining the dynamic characteristics of micro- and opto-electronic structural elements, including printed circuit boards, solder joints, and heavy devices. Learn to design viable and reliable structures capable of withstanding high-level dynamic loading, with a special focus on portable devices and systems operating in harsh environ…
Book Details
ISBN-13: | 9780470250020 |
---|---|
ISBN-10: | 047025002X |
Author: | Ephraim Suhir, T.X. Yu, David S. Steinberg |
Publisher: | John Wiley & Sons Inc |
Imprint: | John Wiley & Sons Inc |
Format: | Hardcover |
Number of Pages: | 608 |
Edition: | 1st |
Release Date: | 3 May 2011 |
Weight: | 1.17kg |
Dimensions: | 241mm x 196mm x 34mm |
You Can Find This Book In
About The Author
Ephraim Suhir
Dr. EPHRAIM SUHIR is Fellow of the IEEE, ASME, APS, IoP (UK), and the SPE. He is Foreign Full Member (Academician) of the National Academy of Engineering, Ukraine; cofounder of the ASME Journal of Electronic Packaging; holds twenty-two U.S. patents; and has authored about 300 technical publications (papers, book chapters, books). Dr. Suhir has received many professional awards, including the 2004 ASME Worcester Read Warner Medal for outstanding contributions to the permanent literature of engineering; 2001 IMAPS John A. Wagnon Technical Achievement Award for outstanding contributions to the technical knowledge of the microelectronics, optoelectronics, and packaging industry; 2000 IEEE-CPMT Outstanding Sustained Technical Contribution Award; 2000 SPE International Engineering/Technology Award for contributions to plastics engineering; 1999 ASME Charles Russ Richards Memorial Award for contributions to mechanical engineering; and 1996 Bell Laboratories Distinguished Member of Technical Staff Award for developing engineering mechanics methods for predicting the reliability, performance, and mechanical behavior of complex structures.
DAVID S. STEINBERG is associated with the University of California, Los Angeles, Extension and also at the University of Wisconsin-Extension. He retired from Litton GCS (now Northrop Grumman) after serving as their director of engineering. He is the author of seven popular textbooks related to the design, analysis, testing, and evaluation of sophisticated electronic equipment for reliable operation in severe vibration, shock, thermal, thermal cycling, acoustic, and pyrotechnic shock environments. His most popular textbooks are Vibration Analysis for Electronic Equipment, Cooling Techniques for Electronic Equipment, and Preventing Thermal Cycling and Vibration Failures in Electronic Equipment, published by Wiley. Dr. Steinberg is currently the President of Steinberg & Associates and has presented seminars, workshops, and consulted for many of the major suppliers of electronics components and equipment such as General Electric, General Motors, Intel, Cisco, Texas Instruments, Microsoft, Harris, Honeywell, Raytheon, Westinghouse, and many others.
T. X. YU is Professor Emeritus of Mechanical Engineering at the Hong Kong University of Science and Technology (HKUST). After graduating from Peking University, he got his PhD and ScD from Cambridge University. After teaching at Peking University and UMIST, he joined HKUST in 1995. Before his retirement in July 2010, he was chair professor of mechanical engineering, associate vice-president (R&D), and dean of Fok Ying Tung Graduate School at HKUST. His research interests include impact dynamics, plasticity, energy absorption, textile and cellular materials, and nano-composites. He has published three textbooks, three scientific monographs, 310 journal papers, 170 international conference papers, and four patents. He serves as Associate Editor for the International Journal of Impact Engineering and International Journal of Mechanical Sciences. He is a Fellow of ASME, IMechE, and HKIE.
Returns
This item is eligible for free returns within 30 days of delivery. See our returns policy for further details.